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Nonlinear Saturation Controller for Suppressing
Inclined Beam Vibrations

Usama H. Hegazy *, Noura A Salem

Abstract—In this paper, we present the numerical and perturbation solutions of an inclined beam to external and parametric forces with
two different controllers, positive position feedback (PPF) and nonlinear saturation (NS) controllers and found that the (NS) one is an
effective controller. The frequency response function and the phase plane methods are used to investigate the system behavior and its
stability. All possible resonance cases will be extracted and effect of different parameters on system behavior at resonance are studied .
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1 INTRODUCTION

ibrations are the cause of discomfort, disturbance,
damage,  and  sometimes  destruction  of  machines  and
structures. It must be reduced or controlled or

eliminated. One of the most common methods of vibration
control is the dynamic absorber. It has the advantages of low
cost  and  simple  operation  at  one  model  frequency.  In  the
domain of many mechanical vibration systems the coupled
nonlinear vibration of such systems can be reduced to
nonlinear second order differential equations which are solved
analytically and numerically.

Elhefnawy and Bassiouny [1] studied the nonlinear
instability problem of two superposed dielectric fluids by
using the method of multiple scales. Frequency response
curves are presented graphically. The stability of the proposed
solution is determined. Numerical solutions are presented
graphically for the effects of the different parameters on the
system stability, response and chaos. El Behady and El-Zahar
[2] studied the effect of the nonlinear controller on the
vibrating system. The approximate solutions up to the second
order are derived using the method of multiple scales
perturbation technique near the primary, principal parametric
and internal resonance cases. Moreover, they investigated the
stability of the solution using both phase plane method and
frequency response equations, and the effects of different
parameters on the vibration of the system. Warminski et al. [3]
studied active suppression of nonlinear composite beam
vibrations by selected control algorithms. Jun et al. [4,5]
extensively studied theoretical and experimental research on
the saturation phenomenon. Eissa et al. [6,7] investigated a
single-degree-of-freedom nonlinear oscillating system subject
to multi-parametric and/or external excitations. The multiple
time scale perturbation technique is applied to obtain solution
up to the third order approximation to extract and study the

available resonance cases. They reported the occurrence of
saturation phenomena at different parameters values. Kwak
and Heo [8] presented effectiveness of the PPF algorithm
applied  for  a  model  of  a  solar  panel,  where  the  first  four
modes of  vibration have been considered.  Siewe and Hegazy
[9] applied different active controllers to suppress the
vibration of a micromechanical resonator system. Moreover, a
time-varying stiffness is introduced to control the chaotic
motion  of  the  considered  system.  Eissa  and  Amer  [10]  and
Yaman and Sen [11] studied the vibration control of a
cantilever beam subject to both external and parametric
excitations but with different controllers. Golnaraghi [12]
indicated that when the system is excited at a frequency near
the high natural frequency, the structure responds at the
frequency of the excitation and the amplitude of the response
increases with the excitation amplitude. Oueini et al. [13]
proposed a nonlinear control law,  which is based on cubic
velocity feedback, to suppress the vibrations of the first mode
of a cantilever beam when subjected to a principal parametric
excitation. The method of multiple scales is used to derive two
first-order differential equations governing the time evolution
of the amplitude and phase of the response. Then, a
bifurcation analysis is conducted to examine the stability of
the closed-loop system and to investigate the performance of
the control law. The theoretical and experimental findings
indicate that the control law leads to effective vibration
suppression and bifurcation control. El-Serafi et al. [14,15]
showed how effective is the active control on vibration
reduction of different modes of motion at resonance. They
demonstrated the advantages of active control over the
passive one. Hegazy [16] studied the nonlinear dynamics and
vibration control of an electromechanical seismograph system
with time-varying stiffness. An active control method is
applied to the system based on cubic velocity feedback. In
[17], Hegazy investigated The problem of suppressing the
vibrations of a hinged–hinged flexible beam that is subjected
to primary and principal parametric excitations. Different
control laws are proposed, and saturation phenomenon is
investigated to suppress the vibrations of the system. El-
Ganaini et al. [18] applied positive position feedback active
controller to suppress the vibration of a nonlinear system
when subjected to external primary resonance excitation. The
multiple scale perturbation method is applied to obtain a first-
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order approximate solution. The equilibrium curves for
various controller parameters are plotted. The stability of the
steady state solution is investigated using frequency response
equations. The approximate solution is numerically verified.
They found that all predictions from analytical solutions are in
good agreement with the numerical simulations.

2 SYSTEM MODEL

The modified second-order nonlinear ordinary differential
equation  that  describes  the  motion  of  the  inclined  beam  is
given by [11]

( )2 3 5 2 2
1 1 2

1 2cos( ) cos( ) cos( )sin( ) ( ).
s

c

u u u u u uu u u

f t uf t F t

m w b b d

a a t

¢¢ ¢ ¢ ¢¢+ + + + - +

= W + W +
 (1)

Where ,u u ¢ and u ¢¢  represent displacement, velocity and

acceleration of the vibrating beam, respectively, sw  is  the

natural frequency, 1m  is the damping coefficient, 1 2,b b  and

d  are nonlinear coefficients, 1f and 2f  are the external and

parametric forcing amplitudes, respectively, W  is  the
excitation frequency, a  is the orientation angle ,t  is the gain
and ( )cF t  is the control signal.

We introduce a two second-order nonlinear controllers, which
are coupled to the main system through a control law. Then,
the equation governing the dynamics of the controllers is
suggested as

22 ( )c c fv v v F txw w r¢¢ ¢+ + =                (2)
where ,v v ¢  and v ¢¢  represent displacement, velocity and

acceleration of the controller, cw is the natural frequency, z is
the damping coefficient and r is the gain. We choose the

control signal cF v=  and feedback signal fF u= for (PPF)

control, and 2
fF v=  , fF uv=  for (NS) control. So the

closed loop system equations to the both controllers are:

(i) Positive Position Feedback (PPF) control

( )2 3 5 2 2
1 1 2

1 2cos( )cos( ) cos( )sin( ) ,
su u u u u uu u u

f t uf t v

m w b b d

a a t

¢¢ ¢ ¢ ¢¢+ + + + - + =

W + W +
(3)

22 c cv v v uxw w r¢¢ ¢+ + =                (4)

(ii) Nonlinear Saturation (NS) control

( )2 3 5 2 2
1 1 2

2
1 2cos( )cos( ) cos( )sin( ) ,

su u u u u uu u u

f t uf t v

m w b b d

a a t

¢¢ ¢ ¢ ¢¢+ + + + - + =

W + W + (5)

22 c cv v v uvxw w r¢¢ ¢+ + = (6)

3 NUMERICAL INTEGRATION

The numerical study of the response and the stability of two
nonlinear systems, are conducted. Each system is represented
by two (the plant and the absorber) coupled second order
nonlinear differential equations. The plant (oriented beam) has
quadratic, cubic and quintic nonlinearities and is subjected to
external and parametric excitations. The coupling terms are
either produce the positive position absorber or nonlinear sink
absorber. All possible resonance cases are extracted and effects
of different parameters and controllers on the plant are
discussed and reported.

3.1 TIME-RESPONSE SOLUTION

The time response of the nonlinear systems (3), (4) and (5), (6)
has been investigated applying fourth order Runge-Kutta
numerical method and the results are shown in Figs. (1) and
(2), respectively. The phase plane method is used to give an
indication about the stability of the system. Figs. (1a) and (1b)
show the non-resonant behavior of the main system and the
PPF absorber,  respectively,  with fine limit  cycle for  the plant.
Whereas, a chaotic behavior is illustrated in Figs.(1c) and (1d)
for both the plant and the absorber at the simultaneous
primary resonance case. Fig. (2) show the responses of the
plant and the NS absorber at non-resonance, Figs. (2a) and
(2b), respectively and at two resonance cases, Figs. (2c) and
(2d). It is clear that the response of the plant with the NS
absorber  is  much  better  than  of  PPF  absorber.  The  NS  might
be  more  effective  in  controlling  the  behavior  of  the  main
system at resonance, which resulted in a slight chaotic
resonant response, Fig. (2c) or a modulated amplitude, Fig.
(2e). Therefore, the NS absorber will be considered  and
coupled with the main system for further investigation in the
following section.

4 MULTIPLE-TIME SCALES ANALYSIS

The nonlinear differential equation (5) with NS controller (6) is
scaled using the perturbation parameter e  as follows

( )2 3 5 2 2
1 1 2

2
1 2cos( )cos( ) cos( )sin( ) ,

su u u u u uu u u

f t uf t v

em w eb eb ed

e a e a et

¢¢ ¢ ¢ ¢¢+ + + + - + =

W + W +   (5a)

22 .c cv v v uvxew w er¢¢ ¢+ + =              (6a)

Applying the multiple scales method, we obtain first order
approximate solutions for equation (3) and (4) by seeking the
solutions in the form
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0 1 0 0 1 1 0 1

0 1 0 0 1 1 0 1

( , ) ( , ) ( , ),
( , ) ( , ) ( , ).

u T T u T T u T T
v T T v T T v T T

e
e

= +

= +
(7)

wheree  is  a  small  dimensionless  book  keeping  perturbation
parameter, 0T t= and 1 0T Te= are the fast and slow time
scales, respectively. The time derivatives transform is recast in
terms of the new time scales as

2
2

0 1 0 0 12, 2d dD D D D D
dt dt

e e= + = + (8)

where

0
0

D
T
¶

=
¶

  and 1
1

D
T
¶

=
¶

.                (9)

Substituting u and time derivatives from equations (7) and
(8), we get

0 1

2
0 0 0 1 1 0 1 1

2 2 2
0 0 0 1 0 1 0 0 1 1

,
,

2 2 ,

u u u
u D u D u D u D u
u D u D u D D u D D u

e

e e e

e e e

= +

¢ = + + +

¢¢ = + + +

          (10)

and

0 1

2
0 0 0 1 1 0 1 1

2 2 2
0 0 0 1 0 1 0 0 1 1

,
,

2 2 .

v v v
v D v D v D v D v
v D v D v D D v D D v

e

e e e

e e e

= +

¢ = + + +

¢¢ = + + +

           (11)

Substituting equations (10) and (11) into equations (5a) and
(6a), we get

2 2
0 0 0 1 0 1 0 1 0 0

2 2 3 5 2 3
0 1 1 0 2 0 0 0

2
1 0 2 0

2
2

cos( )cos( ) cos( )sin( ) 0,
s s
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+ + + + -
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(12)

and
2 2
0 0 0 1 0 1 0 0 0

2 2
0 1 0 0

2 2
0.

c

c c

D v D v D D v D v
v v u v

e e exw

w ew er

+ + +

+ + - =
             (13)

Equating the coefficient of same powers of e  in equations (12)
and (13), gives

0( ) :O e

( )2 2
0 0 0,sD uw+ =                             (14)

and

( )2 2
0 0 0.cD vw+ =                  (15)

1( ) :O e

( )2 2 3 5
0 1 0 1 0 1 0 0 1 0 2 0

2 3
0 0 1

2
0 2 0

2

2 cos( )cos( )

cos( )sin( ) ,

sD u D D u D u u u

D u f t

u f t v

w m b b

d a

a t

+ = - - - -

+ + W

+ W +

       (16)

and

( )2 2
0 1 0 1 0 0 0 0 02 2 .c cD v D D v D v u vw exw r+ = - - +        (17)

The general solution of  equations (14) and (15) is given by
0 0

0 1 1( ) ( ) ,s si T i Tu A T e A T ew w-= +              (18)

and
0 0

0 1 1( ) ( ) .c ci T i Tv B T e B T ew w-= +              (19)

where the quantities 1( )A T  and 1( )B T  are unknown

function in 1T . Now to solve equations (16) and (17), we
substitute equations (18) and (19) into them, then using the
forms

0 0

0cos( )
2

i T i Te eT
W - W+

W = and
0 0

0sin( )
2

i T i Te eT
i

W - W-
W =
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(20)

and
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where cc denotes the complex conjugate terms.

The particular solution of equations (20) and (21) can be
written in the following form

( )
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and

( )

( )

0 0

0

( )
1 0 1 1

( )

1( , )
2

1 .
2

c s c

c s

i T i T

s s c

i T

s s c

v T T B e BAe
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w w w

w w

r
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r
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+

-

= -
+

- +
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(23)

(a) Non-resonant time series of the plant

(b) Non-resonant time series of the controller

(c) Resonant time series of the plant when swW =  and s cw w=

(d) Resonant time series of the controller when swW =  and

s cw w=

Fig. 1 Non-resonant  and resonant time history solution of the plant and
the (PPF) controller when:
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= 2.1,sw 1= 15.0,b = 0.03,d 1 = 0.0005,m = 2.7,W

2= 5.0,b 1= 0.4,f 2 0.2,f = 030 ,a = 0.1,t =
0.0001,x = 10.0,r = 6.5.cw =

(a) Non-resonant time series of the plant

(b) Non-resonant time series of the controller

(c) Resonant time series of the plant when cwW = and
1
2c sw w=

(d) Resonant time series of the controller when cwW = and

1
2c sw w=
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(e) Resonant time series of the plant when 2 swW = and
1
2c sw w=

(f) Resonant time series of the controller when 2 swW = and

1
2c sw w=

Fig. 2  Non-resonant  and resonant time history solution of the plant and
the (NS) controller system when:

= 2.1,sw 1= 15.0,b = 0.03,d 1 = 0.0005,m = 2.7,W

2= 5.0,b 1= 0.4,f 2 0.2,f = 030 ,a = 0.1,t =
0.0001,x = 0.1,r = 6.5.cw =

5 STABILITY ANALYSIS

We shall investigate the stability of the system at the

simultaneous resonance condition cwW = and
1
2c sw w= .

In this case we introduce the detuning parameters 1s  and 2s
such that

1cw esW = +  and 2
1
2c sw w es= +                                 (24)

Substituting equation (24) into equations (20) and (21),
eliminating the terms that produce secular term and
performing some algebraic manipulations, we obtain

( )1 1 2 1

2 3 2 2 2
1 1 2

22
1

2 3 10 6
1 cos 0,
2

s s s

i T i T

i A i A A A A A A A

f e B es s

w m w b b w d

a t

¢- - - - -

+ + =
 (25)

and

( ) 2 1222 2 0i T
c ci B i B ABe sw xw r -¢- - + =

.              (26)

Substituting 1
1

1
2

iA a e q= and 2
2

1
2

iB a e q= , we obtain the

following equations that describe the modulations of
amplitudes and phases of the motions

( ) ( )

( )

1 1 1 1 1 1 1

2
2 1 2 2 1

12 sin cos

1 sin 2 2 ,
2

s

s

a a f T

a T

m q s a
w

t q q s
w

¢ = - + - +

+ - + +
              (27)

( ) ( )

( )

3 5 3
1 1 1 1 2 1 1

1 1 1 1

2
2 1 2 2 1

3 5 32
4 8 2

1 cos cos

1 cos 2 0.
2

s
s s

s

s

a a a a

f T

a T

q b b w d
w w

q s a
w

t q q s
w

¢- - -

+ - +

+ - + + =

             (28)

and

( )2 2 1 2 1 2 2 1
1 sin 2 2 ,

4c
c

a a a a Txw r q q s
w

¢ = - - - + +        (29)

( )2 2 1 2 1 2 2 1
1 cos 2 2 0.

4 c

a a a Tq r q q s
w

¢ + - + + =               (30)
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Let 1 1
1

s

f
w

L = , 2
2 2

1
2 s

at
w

L = , 3 1 2
1

4 c

a ar
w

L =

( )1 1 1 1Tg q s= - + and ( )2 1 2 2 12 2 Tg q q s= - + +

Then, equations (27) - (30) become

( ) ( ) ( )1 1 1 1 1 2 22 sin cos sin ,a am g a g¢ = - + L +L             (31)

( ) ( ) ( )

3 5 3
1 1 1 1 1 1 2 1 1

1 1 2 2

3 5 32 2
4 8 2

cos cos cos .

s
s s

a a a a ag s b b w d
w w

g a g

¢ = - - -

+L + L
(32)

and

( )2 2 3 2sin ,ca axw g¢ = - -L              (33)

( )2 1 2 2 1 2 3 2
1 1( ) ( 2 ) cos .
2 2

a ag g s s g¢ ¢- = - + L               (34)

The steady state solutions correspond to constant 1 2,a a  and

1 2,g g that is 1 2 1 2 0.a a g g¢ ¢ ¢ ¢= = = = Thus we get

( ) ( ) ( )1 1 1 1 2 2sin cos sin ,am g a g= L +L                           (35)

( ) ( ) ( )

3 5 3
1 1 1 1 2 1 1

1 1 2 2

3 5 32
4 8 2

cos cos cos .

s
s s

a a a as b b w d
w w

g a g

- + + +

= L + L
             (36)

and

( )2 3 2sin ,caxw g= -L              (37)

( )2 1 2 3 2
1 ( 2 ) cos .
2

a s s g- - = L              (38)

From equations (35) - (38), we have

( ) ( )

2
2 3 5 3

1 1 1 1 1 1 2 1 1

2 2 2
1 2 1 2

3 5 3( ) 2
4 8 2

cos 2 cos ,

s
s s

a a a a am s b b w d
w w

a a

æ ö
+ - + + +ç ÷
è ø

=L +L + L L

        (39)

( )
2

2 2
2 2 1 2 3

1 ( 2 ) .
2ca axw s sæ ö+ - = Lç ÷

è ø
             (40)

Equations (39) and (40) are called frequency response
equations of the plant and the NS controller, respectively.

(A) TRIVIAL SOLUTION

To determine the stability of the trivial solutions, we
investigate the solutions of the linearized form equations (25)
and (26), that is

12 0,s si A i Aw m w¢- - =              (41)

and

22 2 0.c ci B i Bw xw¢- - =              (42)
We express A and B in the following Cartesian forms

( ) 1 1
1 2

1
2

i TA p ip e f= -  and ( ) 2 1
3 4

1
2

i TB p ip e f= -

where 1 2 3 4, , ,p p p p  are real. We obtain

( ) ( )

( )

1 1 1 1

1 1

1 2 1 1 2

1 1 2

1 12
2 2

1 0.
2

i T i T
s

i T
s

i p ip e i p ip e

i p ip e

f f

f

w f

w m

æ ö¢ ¢- - + -ç ÷
è ø

- - =

        (43)

and

( ) ( )

( )

2 1 2 1

2 1

3 4 2 3 4

2
3 4

1 12
2 2

0.

i T i T
c

i T
c

i p ip e i p ip e

i p ip e

f f

f

w f

xw

æ ö¢ ¢- - + -ç ÷
è ø

- - =
     (44)

Dividing  both  sides  of  equation  (43)  by 1 1i T
se

fw and both of

sides of equation (44) by 2 1i T
ce

fw , give

1 2 1 1 1 2 1 1 2 1
1 1 0.
2 2

ip p p i p ip pf f m m¢ ¢- - + - - - =             (45)

and

3 4 2 3 2 4 3 4 0.c cip p p i p i p pf f w x w x¢ ¢- - + - - - =           (46)
Separating real and imaginary parts in equations (45) and (46)
to get

( )1 1 1 1 2
1 ,
2

p p pm fæ ö¢ = - + -ç ÷
è ø

             (47)

( )2 1 1 1 2
1 ,
2

p p pf mæ ö¢ = + -ç ÷
è ø

             (48)

( ) ( )3 3 2 4 ,cp p pw x f¢ = - + -              (49)

and

( ) ( )4 2 3 4.cp p pf w x¢ = + -              (50)

Setting 11 1
1 ,
2

J m= - 12 1,J f= - 33 ,cJ w z= - 34 2 .J f= -

The stability of the trivial solution is investigated by
evaluating the eigenvalues of the Jacobian matrix of equations
(47) - (50)

11 12

12 11

33 34

34 33

0 0
0 0

0
0 0
0 0

J J
J J

J J
J J

l
l

l
l

-
- -

=
-

- -
,
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which gives

4 3 2
1 2 3 4 0l h l h l h l h+ + + + = .              (51)

where 1 2 3, ,h h h and 4h  are  functions  in  the  system
parameters. According to the Routh-Hurwitz criterion the
necessary  and  sufficient  conditions  for  all  the  roots  of
equations (51) to have negative real parts and hence a stable
solution are

1 0,h > 1 2 3 0,hh h- > ( ) 2
3 1 2 3 1 4 0,h hh h h h- - > 4 0h > .

(B) NON-TRIVIAL SOLUTION

To determine the stability of the non-trivial solutions, we let

1 0 1 1( ),a b b T= + 2 0 1 1( )a c c T= + and

0 1 1( ),Tj j j= + 0 1 1( )Ty y y= +                             (52)

Substituting equation (52) into equations (31) - (34) similarly as
in above, we have

( ) ( )

( ) ( )

0 1 1 0 1 1 1 0 1 0

2
0 0 1 0 0 1 0 1 0

12 2 sin cos cos

1 1sin cos sin cos ,
2 2

s

s s

b b b b f

c c c

m m j j j a
w

t y y y t y y y
w w

¢ ¢+ = - - + +

+ + + +
  (53)

( ) ( )

( ) ( ) ( )

( ) ( )

0 0 1 0 0 1 1 1 1 0 1 1

3 2 5 4
1 0 0 1 2 0 0 1

3 2
0 0 1 1 0 1 0

2
0 0 1 0 0 1 0 1 0

2 2 2 2 2 2
3 53 ... 5 ...

4 8
3 13 ... cos sin cos
2
1 1cos sin cos sin ,

2 2

s s

s
s

s s

b b b b b b

b b b b b b

b b b f

c c c

j j j j s s

b b
w w

wd j j j a
w

t y y y t y y y
w w

¢ ¢ ¢ ¢+ + + = +

- + + - + +

- + + + -

+ - + -

   (54)

( )

( ) ( )

0 1 0 1 0 0 0 1 0

1 0 0 1 0 0 1 0 1 0

1 sin cos
4

1 1sin cos sin cos ,
4 4

c c
c

c c

c c c c b c

bc b c

xw xw r y y y
w

r y y y r y y y
w w

¢ ¢+ =- - - +

- + - +

   (55)

and

( )

( ) ( ) ( )

( ) ( )

0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1

0 1 2 1 1 2 0 0 0 1 0

1 0 0 1 0 0 1 0 1 0

1
2

1 1 1 cos sin
2 2 4
1 1cos sin cos sin .

4 4

c

c c

c c c c c c c c

c c b c

bc b c

j j j j y y y y

s s s s r y y y
w

r y y y r y y y
w w

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢+ + + - - - -

= - + - + -

+ - + -

(56)

Since 0 0 0, ,b c j and 0y   are solutions of equations (31) - (34),

1 1 1, ,b cj and 1y are a very small terms and 0 1 0j j j¢ ¢ ¢+ = = ,

0 1 0y y y¢ ¢ ¢+ = =  then they can be eliminated, we have

( )1 1 1 1 0 1

2
0 0 1 0 0 1

1 1 cos cos
2 2

1 1sin cos ,
4 4

s

s s

b b f

c c c

m j a j
w

t y t y y
w w

æ öæ ö¢ = - + ç ÷ç ÷
è ø è ø
æ ö æ ö

+ +ç ÷ ç ÷
è ø è ø

     (57)

( )

31
1 1 0 2 0 0 1

0

1 0 1 0 0 1
0 0

2
0 0 1

0

9 25 9
8 16 4

1 1sin cos cos
2 2

1 sin ,
4

s
s s

s s

s

b b b b
b

f c c
b b

c
b

s
j b b wd

w w

j a j t y
w w

t y y
w

æ ö
¢ = - - -ç ÷
è ø
æ ö æ ö

+ - +ç ÷ ç ÷
è ø è ø
æ ö

+ -ç ÷
è ø

      (58)

1 0 0 1 0 0 1

0 0 0 1

1 1sin sin
4 4

1 cos
4

c
c c

c

c c b b c

b c

r y xw r y
w w

r y y
w

æ ö æ ö
¢ = - + - -ç ÷ ç ÷

è ø è ø
æ ö

+ -ç ÷
è ø

    (59)

and

( )

( )

31
1 1 0 2 0 0 0 1

0

1 2 0 0 0 0 1
0 0 0

2
0 0 0 0 1 1 0 1

0 0

9 25 9 1 cos
8 16 4 2

1 1 1cos cos
2 2

1 1 1sin sin sin cos .
2 4 2

s
s s c

s c

c s s

b b b b
b

c b c
c b c

b c f
b b

sy b b wd r y
w w w

s s t y r y
w w

r y t y y j a j
w w w

æ ö
¢= - + + + -ç ÷
è ø

æ ö
+ - - - -ç ÷
è ø
æ ö æ ö
+ + +ç ÷ ç ÷
è ø è ø

       (60)

Let

11 1
1 ,
2

J m= - ( )12 1 0
1 cos cos ,

2 s

J f j a
w

=

, 13 0 0
1 sin ,

4 s

J ct y
w

= 2
14 0 0

1 cos ,
4 s

J ct y
w

=

31
21 1 0 2 0 0

0

9 25 9 ,
8 16 4 s

s s

J b b b
b
s

b b w d
w w

= - - -

( )22 1 0
0

1 sin cos ,
2 s

J f
b

j a
w

= -

23 0 0
0

1 cos ,
2 s

J c
b
t y

w
= 2

24 0 0
0

1 sin ,
4 s

J c
b
t y

w
= -

31 0 0
1 sin ,

4 c

J cr y
w

= -

33 0 0
1 sin ,

4c
c

J bxw r y
w

= - - 34 0 0 0
1 cos ,

4 c

J b cr y
w

= -
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31
41 1 0 2 0 0 0

0

9 25 9 1 cos ,
8 16 4 2s

s s c

J b b b
b
s

b b w d r y
w w w

= - + + + -

( )43 1 2 0 0 0 0
0 0 0

1 1 1cos cos ,
2 2s c

J c b
c b c

s s t y r y
w w

= - - - -

2
44 0 0 0 0

0

1 1sin sin .
2 4c s

J b c
b

r y t y
w w

= +

The  stability  of  the  non-trivial  solution  is  investigated  by
evaluating the eigenvalues of the Jacobian matrix of equations
(57) - (60)

11 12 13 14

21 22 23 24

31 33 34

41 22 43 44

0
0

J J J J
J J J J
J J J
J J J J

l
l

l
l

-
-

=
-

- -
,

which gives
4 3 2

1 2 3 4 0l h l h l h l h+ + + + = .              (61)
The non-trivial solution is stable if

1 0,h > 1 2 3 0,hh h- > ( ) 2
3 1 2 3 1 4 0,h hh h h h- - > 4 0.h >

6 THEORETICAL FREQUENCY RESPONSE SOLUTION

The resonant frequency response equations of the main
system (39) with NS controller (40) are solved numerically.
The results are shown in Figs. (3) and (4) which represents the
variation of the steady state amplitudes a1,2 against the
detuning parameter σ1,2, respectively, for different values of
the other parameters. Fig. (3) shows the theoretical frequency
response curves of the main system to primary resonance case.
It can be noted from Figs. (3b-3d) and (3g)  that steady state
amplitude  increases  as  each  of  the  natural  frequency ωs, the
linear damping coefficient µ1 and the nonlinear coefficients β1

and δ decrease. The increase in the quintic nonlinear
parameter β2 bends the frequency response curves to the right
with trivial effect on the steady state amplitude as shown in
Fig. (3e). Fig. (3f) indicates that as the excitation force
amplitude f increases, the branches of the response curves
diverge away and the amplitude increases. The effect of the
gain is shown in Fig. (3h).
Fig. (4) illustrates the resonant frequency response curves of
the NS controller to subharmonic internal resonance for
various parameters. Each figure consists of two curves that
either diverge away when the gain ρ and the steady state
amplitude of the plant increase, Fig.(4b, 4f). Or, they converge
to each others as the natural frequency ωc and the linear
damping ζ are decreased as shown in Fig.(4c, 4d). The curves
in Fig. (4e) are shifted to the right as the detuning parameter σ1

increases.

(a) Basic case

(b) The natural frequency

(c) The damping coefficient

(d) The cubic nonlinear coefficient
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             (e) The quintic nonlinear coefficient

(f) The forcing amplitude

(g) Nonlinear coefficient

(h) The gain

Fig. 3 Theoretical resonant frequency response curves of the plant when:

= 2.7,sw 1= 15.0,b = 0.03,d 1 = 0.0005,m 2= 5.0,b

1= 0.4,f 030 ,a = 0.1.t =

(a) Basic case

(b) The gain

       (c) The damping coefficient

(d) The natural frequency
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(e) The detuning parameter

                         (f) The steady state amplitude of the plant

Fig. 4 Theoretical resonant frequency response curves of the (NS)

controller when: = 2.7,cw  = 0.0001,x = 0.01,s 1= 0.01,a
10.0.r =

7 CONCLUSIONS

The control and stability of a nonlinear differential equation
representing the one-degree-of-freedom nonlinear inclined
beam  are  studied.  The  inclined  beam  has  cubic  and  quintic
nonlinearities subjected to external and parametric excitation
forces.  Two  controller  techniques  have  been  applied  to  the
inclined beam system under different resonance conditions
and the results of numerical Runge-Kutta integration show
that  NS  controller  is  the  most  effective.  The  analytical
solutions of the plant with NS controller are obtained applying
the multiple scales perturbation technique. The stability of the
coupled system is investigated applying the frequency
response equation for various values of the parameters of the
plant and NS controller. In addition, a good criterion of both
stability and chaos is the phase plane.
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